CHEMICAL OCEANOGRAPHIC ASPECT OF THE COLD WATER MASS
IN OFFSHORE OF THE EAST COAST OF KOREA

Chung Kil Park

The cold water mass appeared in offshore of the east coast of Korea in summer season was studied in aspect of chemical oceanography.

Such a typical relationship between phosphate and dissolved oxygen as shown in the upwelling regions could not be found in the east coast except around the Kampo coast, southern part of the east coast.

It is possible to isolate the North Korean Cold Water from the proper water of the Japan Sea by using σ_r-O_2 diagram. The origin of the cold water mass in offshore of the east coast of Korea in summer is not mainly due to the development of upwelling of the proper water of the Japan Sea but the southward flowing of the North Korean Cold Water.

緒 論

本 研究는 海洋化學의 記載에서 이 冷水塊의 起源이 日本海 固有冷水의 洋渦現象인가 아니면 北韓洋涡의 水平移動인지, 그리고 나서 一部海域에는 洋渦 焼殺이 있으면 그 洋渦現象는 哪一 原因を 調査 分析하였다.

調査内容 및 方法

1977년 6月, 7月, 8月 3月에 간처 그림 1에서 보 는 마일 간이 書기에서 주론정 16개 地点 에서 水深別に 腐蝕素과 溶存磷酸素濃度을 測定했으며 그外 全海域에서 水温, 鹽分 等一般 海洋観測을 行

* 松山漁業大學, National Fisheries University of Busan
본 결과

1. 冷水塊出現

![Fig. 2. Temperature distribution in vertical section of 209 and 104 line in August 1977.](image)

그림 2는 1977년 8월에 촬영된 東海의 209호선과 104호선의 水溫의 垂直斷面이다.

東海中部 104호선에서는 5℃以下の 冷水塊 が 50m 높이 沿岸側으로 심한 温度梯度를 이루면서 漂浮하는 것을 확인할 수 있다.

이 冷水塊은 南部으로 그 정도의 差異는 있으나 南部에는 매달 보이는 현상이다. 水平面으로 보면 南部-北部 沿岸が 그 세력이 가장 크고, 이를 中心으로 半圆形으로 南北으로 그 영향을 미친다.

또한 冷水塊의 南部 세력 漂浮는 大韓半島를 거쳐 東海外로 流入北上하는 西風側流에서의 크기와 이 海域周辺의 南西風의 세기에 의해 좌우된다고 한다 (安、1974; 池、1974; 孔和朴, 1969).

2. 溶解水塊の 純酸塩及び溶存酸素の 特異한 關係

純酸塩 及び 溶存酸素의 特異한 關係を 因み에 以下の 物理的인 原因으로 因해 上層으로 水平方に 流れ어가는 現象을 만한다면 下層水가 上層の光合成層으로 上昇하여 따라 生成する 酸化分解を 높게하게 되어 水中の 純酸塩濃度가 水塊上昇에 따라 低下하는 反面 溶存酸素의 濃度는 増加하게 된다.

그래서 이로운 水塊가 上昇하여 水面에 離れる ときに 水塊의 純酸塩濃度를 Pₚ, O₂라 하고 同一時刻에 水塊の上層に 보다 低い 水深 i에서 採取한 純酸塩濃度를 Pᵢ, Oᵢ라고 하면 (Pₚ-Pᵢ)는 光合成으로 消費된 生成物の 水塊의 底水이 되어 (Oₚ-Oᵢ)는 溶存酸素의 濃度에 해당한다.

(Oₚ-Oᵢ)에 對해 (Pₚ-Pᵢ)와의 關係を 垂直方向上에 그려보면 同様의 關係が 診断적이 さらに 頻繁에 各地点의 垂直方向에의 關係を 採取하고 1μg-at Pₚ/l/3(ml O₂/l)인 直線上에 配列하게 된다.

만일 中間에 異常의 關係が 下層에 向いて 하여 場合에 すべて의 關係의 關係を 採取하여 關係의 關係를 關係の 下層에 配列하게 된다.

그러나 水塊의 水平方向이 계속 미나는 위의 生化學的 關係는 그 이상 因하여 없을 것이다 (Sugiuara, 1968).

東海沿岸의 水塊周辺에 영향을 미치는 冷水塊가 下層에 있는 日本海沿岸의 水塊에 의한 것인지 를 보기 위해 그림 2의 溶存酸素과 水塊를 垂直断面 沿岸 16個 地点에서 (Oₚ-Oᵢ)에 對해 (Pₚ-Pᵢ)의 關係를 그린 결과가 그림 3과 같다.

여기서 보는 209/104地點의 水塊周辺海域에서는 6
3. 冷水塊의 촉발

夏季 東海沿岸海域의 橫截 水塊을 보면 高温(>20
℃), 低溫(<33.80%)의 對馬暖流表層水와 中温(14
～17℃), 高層(34.30～34.60%)의 對馬暖流中層水
가混入北上하고 있으며, 低溫(1℃内外) 中層(33.96
～34.10%)의 日本海固有冷水가 北上 200 m 이하에
있고, 低溫(0.2～4℃), 中温(34.00～34.05%)의 北
韓寒流가 沿岸을 따라 南下하고 있다 (Suda
and Hidaka 1932, Miyazaki and Abe 1960, Kajiura et

東海沿岸의 冷水塊의 起源을 찾기 위해 水温이나
鹽分의 断面図를 보면 日本海固有 冷水가 바로 鏈結
이여 있어日本海固有冷水가 마치 沿岸으로 漸形
하는 것 같다고 보인다. 그러나 前述한 바와 같이 東
海中部沿岸의 冷水塊은 低層의 漸形이 아니라고
한다고 단한 北韓寒流가 沿岸을 따라 南下한 것으로
추정할 수 있는데 北韓寒流와 日本海固有冷水는 水温鹽
分이나 T−S diagram 上의 分析으로는 거의 구별이
어려운 비슷한 性質을 가지고 있기 때문에 이것만으
로는 冷水塊의 起源을 밝히기가 곤란하다.

그러나 漸形在水塊을 보면 北韓寒流가 日本海固有
冷水보다도 높고 對馬暖流中層水 보다 현실 높은 特
性을 가지고 있기 때문에 σ1−O2 diagram으로 東海
沿岸水의 水塊을 分析해 보았다.

그림 4는 國立水産振興院 海洋調査年報의 자료를
利用하여 1969年 2月과 8月에 102線에서 106線間의
変暖에서 1000 m深さ까지의 σ1−O2 diagram이다.

東部の 水塊 各層別の 値이 거의 異なる 응어로
있으나 東部에는 A라고 표시된 密度가 낮고 漸形
水塊가 5.0～5.5 ml/l 정도인 對馬暖流表層水와 B로

月과 7月에 上述한 水塊海域에서의 鉻酸塩과 溶存酸
索의 特異한 直線關係を 찾아볼 수 있었으나, 그以北
의 東海中部海域에서는 이처럼 關係를 거의 찾아볼 수
있었고, 各々는 溶存酸素의 順序分布가 低層이나
中層이 表層崩壊기에 비해 溶存酸素量이 더 많은 酸素
逆轉現象을 볼 수 있었다.

結局 1977年 夏季 本 調査期間内においては 鉻酸塩과
溶存酸素의 關係에서 몬 둜 冷水塊이 出現する全
東海沿岸海域中 甘浦半島의 東海沿岸海域에서
만약 미약하나마 漸形現象을 인정할 수 있었고, 冷
水塊が出現在最近の 東海沿岸海域에서の 漸形現象은
 인정할 수 없었으므로 各々는 다른 場所에 의한 것으로
推定されるようだった．

 또한 甘浦半島の 東海沿岸海域이 漸形海域일
것이라는 또 다른 劇報를 듣다면 嶋(1967)の 東海沿
岸海域の 植物流phenomenon 調査나 福島(1969)の 東
海の 冬季風 中分布 調査結果を 보면 北部 夏季 및
秋季에 全沿岸海域가 東海南部海域인 甘浦 半島
海域가 가장 많은 分布量을 보였다는 것이다．
Fig. 4. σ_t–O_2 diagram for off the east coast of Korea in February and August 1969. “A” represents the surface water, “B” is the Tsushima Intermediate water, “C” is North Korean Cold water and “D” is the Proper water of Japan Sea.

The diagram shows σ_t 25.5 at point A, where the dissolved oxygen is 4.2–4.7 ml/l. At point B, σ_t is 27.0 and dissolved oxygen is 6.5–7.5 ml/l. At point C, σ_t is 27.2 and dissolved oxygen is 5.2–6.0 ml/l, indicating that the water is cold. Points D are not shown.

YAEJO

In 1969, April 21, the dissolved oxygen and σ_t at 104 and 106 stations were measured. At station 104, the dissolved oxygen is 4.5 ml/l, with σ_t being 34.5%. The Tsushima Intermediate water is shown in point A, where dissolved oxygen is 2.1–6.0 ml/l, and σ_t is 34.0%. The North Korean Cold water is shown in point C, where dissolved oxygen is 7.5 ml/l, and σ_t is 27.2. The Japanese Proper water is shown in point D, where dissolved oxygen is 6.0–6.5 ml/l, and σ_t is 25.5.

Abstract

During the summer of 1969, a cold water mass was observed off the east coast of Korea. This water mass was characterized by high dissolved oxygen and low salinity. It originated from the Japanese Proper water and was noted as an important feature of the circulation in the area.

1. The cold water mass was observed in the Tsushima Intermediate water, which was noted to be associated with the North Korean Cold water. The Japanese Proper water was also noted to be associated with the cold water mass.

2. The σ_t–O_2 diagram showed that the cold water mass was distinct from the other water masses. It was noted that the cold water mass was associated with a specific set of environmental conditions.

3. The cold water mass was noted to be an important feature of the circulation in the area, and its origin and movement were of great interest to the researchers.
Fig. 5. Vertical distribution of dissolved oxygen and salinity for 104 and 106 line in August.

参考文献

安南珠（1974）：韓國東海的冷水域。生態誌 9(1,2)，10-18。

崔相（1967）：韓國海洋的植物群系研究。生態誌 4，69-91。

