Fatty Acid Composition of 20 Subtropical Fish Species from Jeju Island

Soo-Kyung Moon, In-Soo Kim, Jun-Cheol Ko¹, Hye-Jin Park² and Bo-Young Jeong*

Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
¹Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju 63068, Korea
²Department of Food Science and Nutrition, Changshin University, Changwon 51352, Korea

Lipid levels and fatty acid compositions of 20 species of subtropical fish caught off the coast of Jeju Island, Korea were determined. The fish were categorized according to total lipid (TL) content as follows; lean fish (TL=1.19±0.32%, n=10 species), low-fat fish (TL=3.02±0.44%, n=6 species) and medium-fat fish (TL=6.87±1.23%, n=4 species). The prominent fatty acids were saturated fatty acids (SFAs), at 16:0 and 18:0 monounsaturated fatty acids (MUFAs), at 18:1n-9 and 16:1n-7, and polyunsaturated fatty acids (PUFAs), at 22:6n-3, 20:5n-3 and/or 20:4n-6. Across all species, the percentages of PUFAs and SFAs were 38.0±7.89% and 34.3±3.08%, respectively, with no significant difference between both groups (P<0.05), but showed higher proportions than that of MUFA group (27.8±7.23%) (P<0.05). The proportion of n-3 PUFAs was 27.1±8.68% across all fish species, similar to levels in other fishes from Korea. These results suggest that subtropical fish from Jeju Island are a good source of n-3 PUFAs for humans.

Key words: Lipid content, Subtropical fish, n-3 Polyunsaturated fatty acid, Jeju island.

서 론

 최근 지구 온난화의 영향으로 해역에 따라 상황 정도는 다소 차이를 나타내고 있지만, 전반적으로 우리나라 전 해역의 수온이 점차 상승하는 경향을 보이고 있다(Jeong et al., 2003; Seong et al., 2010). 특히 제주도 연안해역의 연중 표층수온은 낮은 반고도 더 높은 것으로 알려져 있다(Min and Kim, 2006). 또한 제주도 해역의 평균 수온은 지난 41년(1968-2008) 동안 1.17°C (1.13-1.78°C) 상승하였는데, 이는 지난 세기 동안 전세계 평균 수온 상승 정도(0.67°C)보다 약 2배나 높은 수준에 해당한다(Suh et al., 2011; Belkin, 2009; Jung et al., 2006). 이로 인한 수온 상승현상은 과거에 제주도 연안에서는 볼 수 없었던 어류, 즉 새로운 아열대성 어류의 출현이 지속적으로 증가하는 동해양생태계의 변화를 초래하고 있다. Ko et al. (2015)은 2012년부터 2013년까지 2년간 제주도 연안에서 서식하는 아열대성 어류를 조사한 결과, 전체 출현 어종 중 아열대성 어종이 49.4%를 점유하였다고 보고하였다. 이들 아열대성 어류 중에는 이미 식품의약품안전처의 식품원료로서 등재된 어종도 있지만(MFDS, 2017a), 식품영양성분에 대한 구체적인 정보는 거의 알려져 있지 않은 상태이다.

한편 수산물물, 특히 어류의 지질에는 20:5n-3 (eicosapentaenoic acid, EPA), 22:6n-3 (docosahexenoic acid, DHA) 등 n-3 고도불포화지방산(polyunsaturated fatty acid, PUFA)이 많이 함유되어 있고(Ackman, 1989; Jeong et al., 1998b), 이들 n-3 PUFA의 우수한 생리기능에 대해서는 지금까지도 많은 연구자들이 의하여 잘 알려져 있으며(Kinsella, 1988; Hirayama, 1990; Yazawa and Kagayama, 1991; Breslow, 2006; Johnson and Schafer, 2006; Hiebel et al., 2007; Moon et al., 2014), 최근에는 고농도의 n-3 PUFA 제품이 건강기능식품으로 시판되고 있을 뿐만 아니라 고층성지방 환자용 치료제로서 의약품으로도 이용되고 있다(Bradberry and Hillman, 2013; MFDS, 2017b).

일반적으로 어류의 지방산조성은 서식지 환경, 즉 수온, 맥어, 크기, 계절 등 여러 가지 인자에 의하여 달라진다. 특히 서식지의 수온이 낮은 고위도(온대, 한대) 해역에 서식하는 어류는 수온이 높은 저위도(열대, 아열대) 해역에 서식하는 어류에 비하

https://doi.org/10.5657/KFAS.2017.0637

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Table 1. Biological data of 20 species of subtropical fish caught off the coast of Jeju island

<table>
<thead>
<tr>
<th>Korean name</th>
<th>Scientific name</th>
<th>Common name</th>
<th>Body length (cm)</th>
<th>Body weight (g)</th>
<th>No. of sample</th>
<th>Collection date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Yeol-sang-dong-ga-ri</td>
<td>Parapercis multifasciata</td>
<td>Bicolor-barred weever</td>
<td>14.9±0.5</td>
<td>78.2±4.8</td>
<td>25</td>
<td>Dec. 2015</td>
</tr>
<tr>
<td>2. Ga-si-bog</td>
<td>Diodon holocanthus Linnaeus</td>
<td>Balloonfish</td>
<td>17.8±1.4</td>
<td>397.2±107.5</td>
<td>5</td>
<td>Aug. 2016</td>
</tr>
<tr>
<td>3. Sae-da-rae</td>
<td>Brama japonica</td>
<td>Pomfret</td>
<td>33.7±1.5</td>
<td>1656.0±247.7</td>
<td>3</td>
<td>Jul. 2015</td>
</tr>
<tr>
<td>4. Yug-dong-ga-ri-dom</td>
<td>Evistias acutirostris</td>
<td>Banded boarhead</td>
<td>22.0±1.0</td>
<td>464.7±50.6</td>
<td>3</td>
<td>Jun. 2015</td>
</tr>
<tr>
<td>5. Gin-ggo-ni-beng-e-dom</td>
<td>Girella melanichthys</td>
<td>Small scale blackfish</td>
<td>22.4±2.7</td>
<td>216.2±90.9</td>
<td>3</td>
<td>Jul. 2015</td>
</tr>
<tr>
<td>6. Ho-bag-dom</td>
<td>Choerodon azureo</td>
<td>Scar breast tuskfish</td>
<td>19.8±1.9</td>
<td>273.8±91.5</td>
<td>6</td>
<td>Aug. 2016</td>
</tr>
<tr>
<td>7. Geo-bug-bog</td>
<td>Ostracion immaculatus</td>
<td>Black-spotted boxfish</td>
<td>20.3±1.1</td>
<td>487.0±60.8</td>
<td>2</td>
<td>Aug. 2016</td>
</tr>
<tr>
<td>8. No-rang-ben-ja-ri</td>
<td>Callanthias japonicus</td>
<td>Yellowtail red bass</td>
<td>19.7±1.0</td>
<td>233.2±13.2</td>
<td>5</td>
<td>Jul. 2015</td>
</tr>
<tr>
<td>14. Yeo-deob-dong-gai-ri</td>
<td>Gonistius quadricornis</td>
<td>Black barred morwong</td>
<td>25.4±1.2</td>
<td>394.4±43.4</td>
<td>5</td>
<td>Jul. 2015</td>
</tr>
<tr>
<td>17. Gu-gal-dom</td>
<td>Lethrinus haematopterus</td>
<td>Red collared emperor</td>
<td>27.3±1.8</td>
<td>622.2±138.0</td>
<td>2</td>
<td>Aug. 2016</td>
</tr>
<tr>
<td>18. Du-jul-chog-su</td>
<td>Pseudupeneus spilurus</td>
<td>Japanese goatfish</td>
<td>27.8±1.2</td>
<td>544.0±38.8</td>
<td>4</td>
<td>Jun. 2015</td>
</tr>
<tr>
<td>19. Ben-ja-ri</td>
<td>Parapristipoma triilineatum</td>
<td>Three line grunt</td>
<td>23.9±1.0</td>
<td>330.0±20.2</td>
<td>4</td>
<td>Jul. 2015</td>
</tr>
<tr>
<td>20. Ja-ri-dom</td>
<td>Chromis notata</td>
<td>Coralfish</td>
<td>9.9±0.5</td>
<td>42.4±5.2</td>
<td>10</td>
<td>Jun. 2015</td>
</tr>
</tbody>
</table>
울 장착한 gas chromatograph (GC-2010 Plus, Shimadzu Sei-sakusho, Co, Ltd. Kyoto, Japan)로서 분석하였다. 시료 주입
구(injector) 및 FI (flame ionization) 검출기(detector) 온도는
250℃로 하였으며, 컬럼온도(column oven) 온도는 180℃에서
8분간 유지한 후 3℃/min으로 230℃까지 상온 시간 다음 15
분간 유지하였다. Carrier gas는 He (54.0 mL/min)을 사용하
고, split ratio는 1:50으로 하였다. 분석된 지방산은 시료의 경
우와 동일한 조건에서 분석한 표준품(Supelco 37 Component
FAME Mix., Sigma-Aldrich Korea, Seoul, Korea)의 마름모시
간(retention time)과 비교하여 동정하고, 표준품이 없는 지방산
의 경우에는 문헌상(Ackman, 1986; Moon et al., 2005)의 ECL
(equivalent chain length)과 비교하여 동정하였다. 내부 표준
품으로는 methyl tricosanoate (99%, Sigma-Aldrich Korea,
Seoul, Korea)를 사용하였다.
통계분석
실험결과는 SPSS 12.0 (SPSS Inc., Chicago, IL, USA) 프로
그램을 이용하여 평균±표준편차(SDL)로 산출하였으며, 통계
적 유의성 검정은 일원배치 분산분석(one-way analysis of vari-
ance)을 하여 P<0.05의 유의수준에서 Duncan's multiple range
tests를 시행하였다.
결과 및 고찰
총지질 함량
Table 2-5는 20종의 제주도산 아열대성 어류 가식부의 총지
질(total lipid, TL)함량을 나타내었다. 이들 어류의 TL 함량은
0.71%에서 8.23%까지 비교적 다양한 범위를 나타내었고, 이
들 어류는 TL 함량에 따라 4가지 범주로 분류하여 비교하였다.
(Ackman, 1989; Huyhn and Kitts, 2009). 즉, 열량고기, 가시
목, 새다래, 양등고기류, 긴꼬리벵개류, 호박문, 거북목, 노랑벵
가리, 쥐갈개, 청줄등 등 10종은 TL 함량이 평균 1.19±0.32%
로 lean fish [LF, TL 2% 미만, 이하 “저지방어류”라 칭함, 과
학기술용어집(KAST, 1998)에서는 “저지방”으로 표기되어 있음]
로, 독가시치, 아홉등고기, 양날개기, 양등고기류, 벼룩, 무점황
날개기 등 6종은 TL 함량이 평균 3.02±0.44%로서 low-fat fish
(LFF, TL 2.4%, 이하 “소지방어류”라 칭함)로, 구갈개, 두축축
수, 벼가리, 자리등 등 4종은 TL 함량이 평균 6.87±1.23%로
medium-fat fish (MFF, TL 4-8%, 이하 “중간지방어류”라 칭함)으로 분류되었다. 그러나 본 연구에서 TL 함량이 9% 이상인
high-fat fish (HFF, 이하 “다지방어류”라 칭함)에 속하는 어류
은 없었다.
지금까지 이들 20종의 어류 중 TL 함량에 대한 연구로는
Jeong et al. (1998a, b)이 보고한 동영산 자리등이 유일하다. 본
연구에서는 시료작성 제주도산 자리등의 TL 함량은 8.26%로서 동
영산 자리등(Jeong et al., 1998a)의 TL 함량(1.26%)과는 큰 차
이가 있었다. 이 차이는 두 시료간의 서식환경과 섭취기시, 처리

Table 2. Total lipid (TL) content and fatty acid compositions (% of total fatty acids) of five species of lean fish (LF) in 20 species of subtropical fish caught off the coast of Jeju island*
Table 2. Continued

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>1. Bicolor-barred weever (TL < 2%)</th>
<th>2. Balloonfish (TL < 2%)</th>
<th>3. Pomfret (TL < 2%)</th>
<th>4. Banded boarhead (TL < 2%)</th>
<th>5. Small scale blackfish (TL < 2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:1n-5</td>
<td>-</td>
<td>0.17±0.03</td>
<td>0.10±0.00</td>
<td>0.25±0.00</td>
<td>0.10±0.00</td>
</tr>
<tr>
<td>17:1n-7</td>
<td>0.46±0.02</td>
<td>0.50±0.00</td>
<td>0.35±0.01</td>
<td>0.92±0.08</td>
<td>0.09±0.00</td>
</tr>
<tr>
<td>18:1 DMA</td>
<td>-</td>
<td>-</td>
<td>1.23±0.03</td>
<td>0.31±0.01</td>
<td>0.22±0.01</td>
</tr>
<tr>
<td>18:1n-11</td>
<td>-</td>
<td>-</td>
<td>0.06±0.00</td>
<td>0.46±0.06</td>
<td>-</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>6.74±0.03</td>
<td>9.60±0.02</td>
<td>12.70±0.23</td>
<td>10.09±0.74</td>
<td>10.48±0.11</td>
</tr>
<tr>
<td>18:1n-13</td>
<td>2.07±0.01</td>
<td>4.20±0.00</td>
<td>1.79±0.01</td>
<td>2.12±0.11</td>
<td>2.15±0.00</td>
</tr>
<tr>
<td>18:1n-5</td>
<td>0.16±0.00</td>
<td>0.11±0.00</td>
<td>0.14±0.01</td>
<td>0.09±0.00</td>
<td></td>
</tr>
<tr>
<td>20:1n-11</td>
<td>0.15±0.00</td>
<td>0.32±0.02</td>
<td>1.89±0.30</td>
<td>0.16±0.01</td>
<td></td>
</tr>
<tr>
<td>20:1n-9</td>
<td>0.79±0.01</td>
<td>2.29±0.03</td>
<td>0.80±0.01</td>
<td>1.63±0.62</td>
<td>1.04±0.01</td>
</tr>
<tr>
<td>20:1n-7</td>
<td>0.43±0.01</td>
<td>0.20±0.01</td>
<td>0.06±0.00</td>
<td>0.28±0.07</td>
<td>0.21±0.01</td>
</tr>
<tr>
<td>22:1n-11</td>
<td>0.39±0.07</td>
<td>0.37±0.01</td>
<td>0.21±0.01</td>
<td>1.67±0.88</td>
<td>0.43±0.02</td>
</tr>
<tr>
<td>22:1n-9</td>
<td>0.24±0.03</td>
<td>-</td>
<td>-</td>
<td>1.67±0.63</td>
<td>0.27±0.00</td>
</tr>
<tr>
<td>22:1n-17</td>
<td>-</td>
<td>-</td>
<td>0.25±0.02</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total MUFA</td>
<td>-</td>
<td>12.81</td>
<td>20.41</td>
<td>19.73</td>
<td>26.28</td>
</tr>
</tbody>
</table>

16:2n-7	-	0.34±0.02	0.10±0.00	0.18±0.01	0.09±0.00
16:2n-4	0.49±0.02	0.58±0.01	0.63±0.02	0.87±0.05	0.78±0.02
18:2n-6	0.74±0.01	0.83±0.00	0.43±0.01	0.60±0.12	1.69±0.01
18:2n-4	-	-	0.25±0.04	0.10±0.01	
18:3n-6	0.44±0.00	0.34±0.00	0.15±0.01	0.40±0.02	0.47±0.00
18:3n-4	0.29±0.01	0.14±0.01	0.16±0.01	0.44±0.07	0.19±0.01
18:3n-3	0.18±0.01	0.17±0.01	0.15±0.00	0.25±0.07	0.92±0.03
18:4n-3	-	-	0.16±0.01	0.75±0.20	0.50±0.02
18:4n-1	-	-	0.10±0.01	-	
20:2n-6	0.24±0.00	0.42±0.00	0.21±0.00	1.05±0.81	0.24±0.00
20:3n-6	-	0.21±0.01	-	0.23±0.06	0.24±0.01
20:4n-6	4.60±0.05	14.05±0.10	1.91±0.01	7.49±0.22	4.32±0.03
20:3n-3	-	-	0.21±0.00	1.16±0.93	0.13±0.00
20:4n-3	0.32±0.01	0.10±0.00	0.23±0.00	0.32±0.05	0.47±0.02
20:5n-3	5.88±0.03	4.19±0.03	3.26±0.03	8.83±0.06	6.13±0.02
22:2 NMID²	-	0.24±0.00	-	0.14±0.01	-
22:3n-6	-	-	0.05±0.00	-	0.15±0.01
22:4n-6	2.92±0.02	4.87±0.07	0.16±0.01	1.07±0.04	0.77±0.04
22:5n-6	1.60±0.00	1.60±0.03	0.73±0.00	0.56±0.04	1.36±0.01
22:5n-3	4.79±0.02	7.35±0.10	1.28±0.01	2.44±0.08	2.77±0.02
22:6n-3	34.46±0.02	10.48±0.12	39.95±0.38	13.94±0.60	26.46±0.13
Total PUFA	56.97	45.91	49.78	41.07	47.76

TL (%)	0.71±0.01	0.82±0.03	0.87±0.01	1.09±0.01	1.25±0.01
n-6	10.54	22.32	3.64	11.40	9.23
n-3	45.64	22.29	45.24	27.69	37.38

¹DMA, dimethyl acetal. ²NMID, nonmethylene-interrupted diene. SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid. *Results represent means ± SD; superscripts denote significant differences (P<0.05) between all fish species (20 species).
Table 3. Total lipid content and fatty acid compositions (% of total fatty acids) of five species of lean fish (LF) in 20 species of subtropical fish caught off the coast of Jeju island*

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Lean fish (TL < 2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>7.84±0.25</td>
</tr>
<tr>
<td>15:0 iso</td>
<td>-</td>
</tr>
<tr>
<td>15:0</td>
<td>0.67±0.01</td>
</tr>
<tr>
<td>16:0 iso</td>
<td>0.18±0.01</td>
</tr>
<tr>
<td>16:0 DMA</td>
<td>0.21±0.00</td>
</tr>
<tr>
<td>16:0</td>
<td>19.69±0.03</td>
</tr>
<tr>
<td>17:0 iso</td>
<td>0.55±0.00</td>
</tr>
<tr>
<td>17:0</td>
<td>1.05±0.01</td>
</tr>
<tr>
<td>18:0 iso</td>
<td>0.34±0.00</td>
</tr>
<tr>
<td>18:0 DMA</td>
<td>0.42±0.00</td>
</tr>
<tr>
<td>18:0</td>
<td>6.19±0.06</td>
</tr>
<tr>
<td>20:0</td>
<td>0.27±0.01</td>
</tr>
<tr>
<td>22:0</td>
<td>-</td>
</tr>
<tr>
<td>24:0</td>
<td>-</td>
</tr>
<tr>
<td>Total SFA</td>
<td>37.42</td>
</tr>
<tr>
<td>14:1n-5</td>
<td>0.32±0.01</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>4.05±0.15</td>
</tr>
<tr>
<td>16:1n-5</td>
<td>0.23±0.01</td>
</tr>
<tr>
<td>17:1n-7</td>
<td>0.67±0.03</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>11.18±0.01</td>
</tr>
<tr>
<td>18:1n-7</td>
<td>2.87±0.05</td>
</tr>
<tr>
<td>18:1n-5</td>
<td>0.25±0.06</td>
</tr>
<tr>
<td>20:1n-11</td>
<td>1.04±0.02</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>0.94±0.01</td>
</tr>
<tr>
<td>20:1n-7</td>
<td>0.54±0.01</td>
</tr>
<tr>
<td>22:1n-11</td>
<td>0.44±0.02</td>
</tr>
<tr>
<td>22:1n-9</td>
<td>-</td>
</tr>
<tr>
<td>22:1n-7</td>
<td>-</td>
</tr>
<tr>
<td>Total MUFA</td>
<td>22.54</td>
</tr>
<tr>
<td>16:2n-7</td>
<td>0.20±0.00</td>
</tr>
<tr>
<td>16:2n-4</td>
<td>0.81±0.01</td>
</tr>
<tr>
<td>18:2n-7</td>
<td>-</td>
</tr>
<tr>
<td>18:2n-6</td>
<td>1.26±0.01</td>
</tr>
<tr>
<td>18:2n-4</td>
<td>0.20±0.00</td>
</tr>
<tr>
<td>18:3n-6</td>
<td>0.32±0.01</td>
</tr>
<tr>
<td>18:3n-4</td>
<td>0.29±0.01</td>
</tr>
<tr>
<td>18:3n-3</td>
<td>0.61±0.00</td>
</tr>
<tr>
<td>18:4n-3</td>
<td>0.74±0.03</td>
</tr>
<tr>
<td>20:2 nMID</td>
<td>-</td>
</tr>
<tr>
<td>20:2n-6</td>
<td>0.44±0.01</td>
</tr>
<tr>
<td>20:3n-6</td>
<td>0.22±0.01</td>
</tr>
</tbody>
</table>
방법 등 다양한 요인 때문으로 보여진다. 즉 제주도산 자료들은 6월(2015년)에 채집되었고, 채집을 포함한 가식부를 시료로 채
취하여 피하지점의 손실이 없었으며, 시료처리 과정 중 난소가 양산으로 확인된 점으로 보아 산란 전수로 생각되었다. 그러
나 통영산 자료들의 경우는 7월(1995년)으로 산란여부를 판
단할 수 없었으며 시료처리 과정에서 채집을 제외한 근육만을
채취하였기 때문에 피하지점의 손실이 TL 함량에 상당한 영향
을 미칠 것으로 생각된다.

본 연구에서 시험된 20종의 아열대성 어류의 TL 함량(0.71%-8.26%, 평균 2.87±2.28%)은 Jeong et al. (1998a,b)이 보고한
72종 어류 중 19종의 표준혈당여류(TL, 1.26-16.6%, 평균
6.09±4.20%)와 14종의 연안 암초여류(TL, 0.88-8.80%, 평균
3.41±2.70%), 그리고 26종의 저서여류(TL, 0.53-9.47%, 평균
2.12±2.40%)의 TL 함량에 비교하였을 때, 14종의 연안 암초여
류의 경우가 가장 유사하였다. 이러한 결과는 20종의 아열대
성 어류 중 세대대를 제외한 모든 어종은 제주도 연안의
암초 또는 모래가 많은 해역에 서식(Kim et al., 2005)하고 있
기 때문에 Jeong et al. (1998a,b)이 보고한 기존의 연안 암초
류와 서식환경이 비교적 유사하기 때문으로 보인다. 본 연구
에서 시험된 세대대는 연안 암초지대가 아닌 먼바다 중층에 서
식하며 주로 소형어류나 갯각류를 먹이로 하는 어류이다(Kim
et al., 2005).

지방산 조성

제주도산 아열대성 어류 20종은 14:0부터 22:6n-3까지 40종

Table 3. Continued

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Lean fish (TL<2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:4n-6</td>
<td>6.30±0.08<sup>a</sup></td>
</tr>
<tr>
<td>20:3n-3</td>
<td>-</td>
</tr>
<tr>
<td>20:4n-3</td>
<td>0.45±0.01<sup>e</sup></td>
</tr>
<tr>
<td>20:5n-3</td>
<td>6.05±0.02<sup>d</sup></td>
</tr>
<tr>
<td>22:2 NMID</td>
<td>1.74±0.03<sup>d</sup></td>
</tr>
<tr>
<td>22:3n-3</td>
<td>0.26±0.01<sup>d</sup></td>
</tr>
<tr>
<td>22:4n-6</td>
<td>1.46±0.03<sup>d</sup></td>
</tr>
<tr>
<td>22:5n-6</td>
<td>0.96±0.00<sup>d</sup></td>
</tr>
<tr>
<td>22:5n-3</td>
<td>3.06±0.02<sup>d</sup></td>
</tr>
<tr>
<td>22:6n-3</td>
<td>14.68±0.19<sup>d</sup></td>
</tr>
<tr>
<td>Total PUFA</td>
<td>40.04<sup>d</sup></td>
</tr>
<tr>
<td>TL (%)</td>
<td>1.29±0.14<sup>e</sup></td>
</tr>
<tr>
<td>n-6</td>
<td>11.22<sup>e</sup></td>
</tr>
<tr>
<td>n-3</td>
<td>25.59<sup*e</sup></td>
</tr>
</tbody>
</table>

^aDMA, dimethyl acetal. ^bNMID, nonmethylene-interrupted diene. SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid. *Results represent means ± SD; superscripts denote significant differences (P<0.05) between all fish species (20 species).
Table 4. Total lipid content and fatty acid compositions (% of total fatty acids) of five species of low-fat fish (LFF) in 20 species of subtropical fish caught off the coast of Jeju island*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>3.33±0.01(^b)</td>
<td>2.87±0.01(^b)</td>
<td>13.06±0.23(^a)</td>
<td>2.88±0.01(^a)</td>
<td>2.39±0.01(^c)</td>
</tr>
<tr>
<td>15:0</td>
<td>0.67±0.00</td>
<td>0.62±0.00</td>
<td>0.50±0.00</td>
<td>0.51±0.01</td>
<td>0.64±0.01</td>
</tr>
<tr>
<td>16:0 iso</td>
<td>-</td>
<td>0.22±0.00</td>
<td>-</td>
<td>0.22±0.00</td>
<td>0.28±0.01</td>
</tr>
<tr>
<td>16:0 DMA(^1)</td>
<td>0.33±0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16:1</td>
<td>25.25±0.09(^n)</td>
<td>19.91±0.05(^f)</td>
<td>19.69±0.13(f)</td>
<td>18.24±0.08(^d)</td>
<td>25.41±0.09(^m)</td>
</tr>
<tr>
<td>17:0 iso</td>
<td>0.33±0.01</td>
<td>0.44±0.19</td>
<td>0.39±0.01</td>
<td>0.52±0.01</td>
<td>0.57±0.01</td>
</tr>
<tr>
<td>17:0</td>
<td>0.62±0.00</td>
<td>0.96±0.49</td>
<td>0.66±0.02</td>
<td>0.92±0.00</td>
<td>0.28±0.00</td>
</tr>
<tr>
<td>18:0 iso</td>
<td>0.67±0.01</td>
<td>-</td>
<td>-</td>
<td>0.26±0.00</td>
<td>-</td>
</tr>
<tr>
<td>18:0 DMA</td>
<td>-</td>
<td>0.23±0.00</td>
<td>-</td>
<td>0.22±0.00</td>
<td>1.04±0.00</td>
</tr>
<tr>
<td>18:0</td>
<td>4.65±0.02(^b)</td>
<td>8.83±0.01(^m)</td>
<td>5.81±0.13(d)</td>
<td>5.39±0.01(^c)</td>
<td>6.58±0.04(^d)</td>
</tr>
<tr>
<td>20:0</td>
<td>0.25±0.00</td>
<td>0.30±0.01</td>
<td>0.25±0.01</td>
<td>0.32±0.00</td>
<td>0.46±0.00</td>
</tr>
<tr>
<td>22:0</td>
<td>-</td>
<td>0.22±0.01</td>
<td>-</td>
<td>-</td>
<td>0.19±0.00</td>
</tr>
<tr>
<td>24:0</td>
<td>-</td>
<td>0.19±0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total SFA</td>
<td>36.10</td>
<td>34.79</td>
<td>40.36</td>
<td>29.49</td>
<td>37.85</td>
</tr>
<tr>
<td>14:1n-5</td>
<td>0.17±0.00</td>
<td>0.17±0.00</td>
<td>0.20±0.00</td>
<td>0.21±0.00</td>
<td>-</td>
</tr>
<tr>
<td>16:1n-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.93±0.06</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>8.55±0.01(^d)</td>
<td>5.27±0.02(^f)</td>
<td>4.30±0.01(^f)</td>
<td>5.52±0.03(^d)</td>
<td>4.44±0.02(^g)</td>
</tr>
<tr>
<td>16:1n-5</td>
<td>-</td>
<td>0.37±0.27</td>
<td>0.31±0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17:1n-7</td>
<td>0.69±0.01</td>
<td>0.42±0.28</td>
<td>0.49±0.01</td>
<td>0.70±0.01</td>
<td>0.84±0.03</td>
</tr>
<tr>
<td>18:1n-11</td>
<td>-</td>
<td>0.46±0.00</td>
<td>0.44±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>9.62±0.02(^c)</td>
<td>17.68±0.04(^m)</td>
<td>14.77±0.17(d)</td>
<td>17.42±0.04(^n)</td>
<td>18.13±0.10(^o)</td>
</tr>
<tr>
<td>18:1n-7</td>
<td>3.84±0.01(^f)</td>
<td>4.06±0.01(^m)</td>
<td>3.22±0.06(^g)</td>
<td>3.28±0.01(^d)</td>
<td>3.00±0.00(^o)</td>
</tr>
<tr>
<td>18:1n-5</td>
<td>0.38±0.01</td>
<td>0.23±0.00</td>
<td>0.29±0.00</td>
<td>0.23±0.02</td>
<td>0.27±0.00</td>
</tr>
<tr>
<td>20:1n-11</td>
<td>-</td>
<td>1.18±0.01</td>
<td>0.97±0.03</td>
<td>0.92±0.01</td>
<td>0.97±0.00</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>0.51±0.00(^ab)</td>
<td>1.06±0.01(^de)</td>
<td>3.00±0.07(^h)</td>
<td>1.98±0.01(^h)</td>
<td>1.22±0.00(^e)</td>
</tr>
<tr>
<td>20:1n-7</td>
<td>0.31±0.00</td>
<td>0.41±0.02</td>
<td>0.57±0.00</td>
<td>0.41±0.01</td>
<td>0.47±0.00</td>
</tr>
<tr>
<td>22:1n-11</td>
<td>0.34±0.01(^ab)</td>
<td>0.63±0.01(^ac)</td>
<td>0.56±0.01(^abc)</td>
<td>1.11±0.01(^d)</td>
<td>0.57±0.01(^abc)</td>
</tr>
<tr>
<td>22:1n-9</td>
<td>-</td>
<td>-</td>
<td>0.30±0.03</td>
<td>0.30±0.03</td>
<td>0.80±0.01</td>
</tr>
<tr>
<td>22:1n-7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.19±0.01</td>
<td>-</td>
</tr>
<tr>
<td>Total MUFA</td>
<td>24.41</td>
<td>31.93</td>
<td>29.42</td>
<td>32.24</td>
<td>33.96</td>
</tr>
</tbody>
</table>

16:2n-7 | 0.25±0.00 | 0.43±0.18 | - | 0.29±0.01 | 0.32±0.00 |
16:2n-4	0.66±0.00	0.93±0.54	0.56±0.00	0.76±0.03	0.97±0.02
18:2n-7	-	0.40±0.00	0.28±0.00	-	0.25±0.00
18:2n-6	1.09±0.02	0.79±0.00	0.85±0.00	0.85±0.00	0.61±0.01
18:2n-4	-	0.22±0.00	-	0.26±0.01	-
18:3n-6	0.58±0.00	0.39±0.00	0.25±0.01	0.28±0.00	0.52±0.00
18:3n-4	0.19±0.02	0.27±0.01	0.20±0.00	0.36±0.00	0.24±0.02
18:3n-3	0.97±0.01	0.33±0.00	0.46±0.00	0.39±0.01	-
18:4n-3	0.72±0.01	0.33±0.01	0.75±0.05	0.51±0.01	1.00±0.04
20:2 NMID\(^2\)	-	0.36±0.01	0.52±0.02	-	-
20:2n-6	0.21±0.01	0.57±0.01	0.53±0.01	0.74±0.45	0.31±0.00
Table 4. Continued

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Low-fat fish (TL, 2-4%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:3n-6</td>
<td>0.38±0.02</td>
</tr>
<tr>
<td>20:4n-6</td>
<td>4.85±0.09</td>
</tr>
<tr>
<td>20:3n-3</td>
<td>-</td>
</tr>
<tr>
<td>20:4n-3</td>
<td>0.86±0.01</td>
</tr>
<tr>
<td>20:5n-3</td>
<td>2.93±0.03</td>
</tr>
<tr>
<td>22:2 NMD</td>
<td>0.28±0.09</td>
</tr>
<tr>
<td>22:3n-6</td>
<td>-</td>
</tr>
<tr>
<td>22:4n-6</td>
<td>1.24±0.01</td>
</tr>
<tr>
<td>22:5n-6</td>
<td>1.76±0.01</td>
</tr>
<tr>
<td>22:5n-3</td>
<td>6.39±0.06</td>
</tr>
<tr>
<td>22:6n-3</td>
<td>16.14±0.18</td>
</tr>
<tr>
<td>Total PUFA</td>
<td>39.49</td>
</tr>
</tbody>
</table>

TL (%)

| n-6 | 2.24±0.02n | 2.89±0.11n | 2.90±0.05i | 3.27±0.09p | 3.34±0.17n |
| n-3 | 10.10 | 10.78 | 7.95 | 6.86 | 8.88 |

1DMA, dimethyl acetal. *NMD, nonmethylene-interrupted diene. SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid. *Results represent means ± SD; superscripts denote significant differences (P<0.05) between all fish species (20 species).

PUFA, MUFA 등 불포화지방산의 조성비는 낮은 것으로 알려져있다(Huynh and Kitts, 2009). 이러한 사실은 저수온에서 사육한 guppy의 지방산 조성이 고수온에서 사육한 것보다 불포화지방산의 조성비가 높다는Kayama et al. (1963)의 모델시험에서 확인된 적이 있다. 농장사람 낙지국해(위도, 5°62'N) 부근의 산호초해역에서 서식하는 열대성 어류 5종의 지방

산 조성은 SFA (57.2-74.2%)-MUFA (21.4-39.0%)-PUFA (2.8-14.1%) 순이었고(Arai et al., 2015), 필리핀 남부의 민다

나 오해(위도, 8°54'-8°55'N)에서 서식하는 6종의 열대성 어류에서도 SFA (62.4-72.4%)-MUFA (15.1-20.3%)-PUFA (9.7-17.1%)의 순이었다(Metilio and Aspiras-Eye, 2014). 따

라서 열대성 어류 지방산조성의 특징은 SFA의 조성비가 총지

방산의 대부분을 차지하고 PUFA의 조성비는 약 10% 수준으

로 미량성분에 불과하다. 또한 10종의 인도양(위도, 10°48' -10°52' N)산 어류에서는 SFA (31.6-39.0%)-MUFA (30.3-35.1%)-MUFA (22.0-26.3%)의 순이었으며(Dhameesh et al., 2012), 3종의 오카나와 근해의 동중국해(위도, 26°15'N) 및 태

평양(위도, 24°30'N)에서 서식하는 아열대성 어류에서도 SFA (39.2-43.7%)-PUFA (29.0-37.3%)-MUFA (20.7-23.3%)의

순으로 나타났다(Saito et al., 1999). 따라서 위도가 열대해역

보다 높은 아열대 해역에서 서식하는 어류는 열대성 어류에 비하

여 SFA 조성비는 감소하고, PUFA 조성비는 증가하는 경향을

나타내었다.

온대성 어류로서 Jeong et al. (1998b)이 보고한 72종 어류 중

14종의 통계해역(위도, 34°85'N)에서 서식하는 연안 아열저어류에

서는 의견상 PUFA (17.5-52.2%, 평균 34.0±10.0%)-MUFA (18.6-47.5%, 평균 33.3±7.8%)-SFA (28.3-43.6%, 평균 32.8±

4.0%)으로 이들 지방산조를 사이에는 거의 차이가 없었으나

(Jeong et al., 1998b), 아열대성 어류에 비해는 PUFA 조

성비가 더 높은 경향을 보였다. 본 연구에서 20종의 해주도(위

도, 서귀포 33°25'N) 연안산 어류의 지방산 조성은 PUFA (37.9±7.88%)≥SFA (34.3±0.08%)-MUFA (27.8±7.23%)

의 순으로 통계학 연안 아열저어류와 매우 유사하였으나 다만 MUFA 조성비가 본 연구에서 약간 낮은 수준이

었다. 그리고 온대성 어류로서 상업적으로 중요한 8종의 티

카산 어류(Özogul et al., 2007)에서도 본 연구의 경우와 같

이 PUFA>SFA>MUFA의 순이었다. 그러나 8종의 북서평양(British Columbia와 Alaskan) 해역의 냉수성 어류에서

는 PUFA (24.2-56.8%)-MUFA (14.2-53.0%)-SFA (19.3-36.9%) 순이었고(Huynh and Kitts, 2009), 남대양의 South

Georgia 해역(위도, 약 54'S)에서 서식하는 10종의 냉수성 서저

어류에서는 PUFA (14.8-57.3%)-MUFA (15.8-52.8%)-SFA

(24.4-36.3%) 순으로 보고되었다(Stiowasser et al., 2012). 따라

서 본 연구 결과와 이전의 연구 결과들과 종합해 볼 때, 수온이

높은 열대성 어류에서는 포화지방산의 조성비가 높고, 아열대, 온대, 한대 지역으로 위도가 높아지면서 수온이 낮아짐수록 포화지

방산은 감소하고 PUFA, MUFA 등 불포화지방산이 증가하는

경향을 나타내었다. 이러한 현상은 변온생물의 일종인 어류가
Table 5. Total lipid content and fatty acid compositions (% of total fatty acids) of one species of LFF and four species of medium-fat fish in 20 species of subtropical fish caught off the coast of Jeju island⁎

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>12.87±0.05⁹</td>
<td>3.27±0.07⁹</td>
<td>3.15±0.03⁹</td>
<td>4.13±0.06⁹</td>
<td>5.79±0.42²</td>
</tr>
<tr>
<td>15:0 iso</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.29±0.02</td>
<td></td>
</tr>
<tr>
<td>15:0 anteiso</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.09±0.00</td>
<td></td>
</tr>
<tr>
<td>15:0</td>
<td>0.72±0.01</td>
<td>0.49±0.01</td>
<td>0.75±0.01</td>
<td>0.74±0.01</td>
<td>0.66±0.04</td>
</tr>
<tr>
<td>16:0</td>
<td>18.08±0.03³</td>
<td>21.41±0.18³</td>
<td>23.76±0.08³</td>
<td>21.87±0.10³</td>
<td>16.86±0.56³</td>
</tr>
<tr>
<td>17:0 iso</td>
<td>0.38±0.01</td>
<td>0.39±0.00</td>
<td>0.38±0.01</td>
<td>0.28±0.01</td>
<td>0.21±0.04</td>
</tr>
<tr>
<td>17:0</td>
<td>0.77±0.01</td>
<td>0.67±0.01</td>
<td>0.98±0.01</td>
<td>0.68±0.00</td>
<td>0.49±0.01</td>
</tr>
<tr>
<td>18:0 iso</td>
<td>0.25±0.00</td>
<td>0.22±0.01</td>
<td>0.30±0.00</td>
<td>0.21±0.00</td>
<td>0.22±0.03</td>
</tr>
<tr>
<td>18:0 DMA¹</td>
<td>0.16±0.01</td>
<td>-</td>
<td>-</td>
<td>0.16±0.01</td>
<td></td>
</tr>
<tr>
<td>18:0</td>
<td>5.68±0.02³</td>
<td>6.63±0.02³</td>
<td>5.20±0.01³</td>
<td>4.96±0.01³</td>
<td>3.34±0.03³</td>
</tr>
<tr>
<td>20:0</td>
<td>0.29±0.01</td>
<td>0.33±0.00</td>
<td>0.34±0.00</td>
<td>0.32±0.01</td>
<td>0.21±0.01</td>
</tr>
<tr>
<td>22:0</td>
<td>0.21±0.00</td>
<td>0.24±0.00</td>
<td>0.15±0.01</td>
<td>0.11±0.07</td>
<td></td>
</tr>
<tr>
<td>Total SFA</td>
<td>39.19</td>
<td>33.78</td>
<td>35.10</td>
<td>33.35</td>
<td>28.42</td>
</tr>
<tr>
<td>14:1n-5</td>
<td>0.22±0.01</td>
<td>-</td>
<td>0.16±0.01</td>
<td>0.13±0.00</td>
<td>0.09±0.01</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>3.98±0.01⁶</td>
<td>6.90±0.12⁶</td>
<td>7.96±0.00³</td>
<td>6.28±0.03³</td>
<td>7.58±0.12⁶</td>
</tr>
<tr>
<td>16:1n-5</td>
<td>0.27±0.00</td>
<td>-</td>
<td>0.17±0.00</td>
<td>0.34±0.00</td>
<td>0.39±0.06</td>
</tr>
<tr>
<td>17:1n-7</td>
<td>0.50±0.01</td>
<td>0.65±0.01</td>
<td>0.68±0.00</td>
<td>0.44±0.01</td>
<td>0.66±0.03</td>
</tr>
<tr>
<td>18:1 DMA²</td>
<td>-</td>
<td>-</td>
<td>0.40±0.01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18:1n-11</td>
<td>-</td>
<td>0.18±0.00</td>
<td>-</td>
<td>0.26±0.02</td>
<td></td>
</tr>
<tr>
<td>18:1n-9</td>
<td>13.23±0.02³</td>
<td>20.94±0.00⁹</td>
<td>15.87±0.01³</td>
<td>15.48±0.02³</td>
<td>7.49±1.3³</td>
</tr>
<tr>
<td>18:1n-7</td>
<td>2.19±0.01³</td>
<td>3.13±0.01³</td>
<td>3.06±0.33³</td>
<td>2.74±0.00³</td>
<td>1.50±0.01³</td>
</tr>
<tr>
<td>18:1n-5</td>
<td>0.19±0.01</td>
<td>-</td>
<td>0.17±0.00</td>
<td>0.47±0.02</td>
<td>0.26±0.02</td>
</tr>
<tr>
<td>20:1n-11</td>
<td>0.86±0.00</td>
<td>1.10±0.02</td>
<td>0.74±0.00</td>
<td>0.25±0.00</td>
<td>-</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>3.47±0.01³</td>
<td>1.26±0.01³</td>
<td>1.59±0.01³</td>
<td>2.54±0.01³</td>
<td>10.83±0.10³</td>
</tr>
<tr>
<td>20:1n-7</td>
<td>0.33±0.02</td>
<td>0.41±0.01</td>
<td>0.32±0.01</td>
<td>0.24±0.01</td>
<td>0.46±0.28</td>
</tr>
<tr>
<td>22:1n-11</td>
<td>2.07±0.01³</td>
<td>0.61±0.02³ab</td>
<td>0.79±0.01³</td>
<td>2.57±0.02³</td>
<td>14.29±1.7³</td>
</tr>
<tr>
<td>22:1n-9</td>
<td>0.34±0.01</td>
<td>0.33±0.02</td>
<td>0.24±0.00</td>
<td>0.46±0.00</td>
<td>0.21±0.03</td>
</tr>
<tr>
<td>22:1n-7</td>
<td>-</td>
<td>0.19±0.01</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total MUFA</td>
<td>27.64</td>
<td>35.71</td>
<td>31.75</td>
<td>31.95</td>
<td>44.14</td>
</tr>
<tr>
<td>16:2n-7</td>
<td>0.17±0.00</td>
<td>0.23±0.00</td>
<td>0.23±0.00</td>
<td>0.13±0.01</td>
<td>0.26±0.01</td>
</tr>
<tr>
<td>16:2n-4</td>
<td>0.81±0.01</td>
<td>0.61±0.01</td>
<td>0.46±0.03</td>
<td>0.89±0.02</td>
<td>0.55±0.03</td>
</tr>
<tr>
<td>18:2n-7</td>
<td>0.18±0.01</td>
<td>0.66±0.05</td>
<td>0.20±0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18:2n-6</td>
<td>1.08±0.01</td>
<td>0.69±0.01</td>
<td>1.19±0.01</td>
<td>1.01±0.04</td>
<td>1.35±0.03</td>
</tr>
<tr>
<td>18:2n-4</td>
<td>-</td>
<td>0.17±0.01</td>
<td>-</td>
<td>0.18±0.02</td>
<td>0.16±0.03</td>
</tr>
<tr>
<td>18:3n-6</td>
<td>0.23±0.00</td>
<td>0.26±0.01</td>
<td>0.26±0.02</td>
<td>0.19±0.02</td>
<td>0.28±0.05</td>
</tr>
<tr>
<td>18:3n-4</td>
<td>0.26±0.00</td>
<td>0.28±0.00</td>
<td>0.23±0.03</td>
<td>0.22±0.03</td>
<td>-</td>
</tr>
<tr>
<td>18:3n-3</td>
<td>0.56±0.00</td>
<td>0.27±0.02</td>
<td>0.63±0.07</td>
<td>0.78±0.13</td>
<td>0.10±0.07</td>
</tr>
<tr>
<td>18:4n-3</td>
<td>1.24±0.00</td>
<td>0.28±0.01</td>
<td>0.56±0.01</td>
<td>0.80±0.02</td>
<td>3.72±0.07</td>
</tr>
<tr>
<td>18:4n-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.09±0.00</td>
<td></td>
</tr>
<tr>
<td>20:2 NMID²</td>
<td>-</td>
<td>0.73±0.00</td>
<td>0.24±0.07</td>
<td>0.45±0.42</td>
<td>-</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>20:2n-6</td>
<td>0.46±0.01</td>
<td>0.36±0.01</td>
<td>0.38±0.05</td>
<td>0.26±0.08</td>
<td>0.19±0.00</td>
</tr>
<tr>
<td>20:3n-6</td>
<td>-</td>
<td>0.17±0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20:4n-6</td>
<td>3.17±0.01</td>
<td>3.37±0.02</td>
<td>2.07±0.00</td>
<td>1.15±0.00</td>
<td>0.41±0.03</td>
</tr>
<tr>
<td>20:3n-3</td>
<td>0.19±0.00</td>
<td>-</td>
<td>0.16±0.00</td>
<td>-</td>
<td>0.18±0.08</td>
</tr>
<tr>
<td>20:4n-3</td>
<td>0.41±0.01</td>
<td>0.39±0.04</td>
<td>0.30±0.01</td>
<td>1.00±0.01</td>
<td>0.69±0.01</td>
</tr>
<tr>
<td>20:5n-3</td>
<td>5.40±0.02</td>
<td>4.85±0.02<sup>h</sup></td>
<td>5.68±0.06<sup>j</sup></td>
<td>4.93±0.02<sup>j</sup></td>
<td>7.19±0.13<sup>n</sup></td>
</tr>
<tr>
<td>22:2 NMID</td>
<td>0.42±0.00</td>
<td>0.41±0.01</td>
<td>0.29±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22:3n-6</td>
<td>0.25±0.00</td>
<td>0.22±0.00</td>
<td>0.18±0.01</td>
<td>0.24±0.00</td>
<td>-</td>
</tr>
<tr>
<td>22:4n-6</td>
<td>1.14±0.03<sup>i</sup></td>
<td>1.85±0.04<sup>l</sup></td>
<td>1.04±0.02<sup>h</sup></td>
<td>0.33±0.00<sup>n</sup></td>
<td>-</td>
</tr>
<tr>
<td>22:5n-6</td>
<td>0.58±0.00</td>
<td>0.49±0.00</td>
<td>0.63±0.01</td>
<td>0.61±0.00</td>
<td>0.23±0.01</td>
</tr>
<tr>
<td>22:5n-3</td>
<td>1.93±0.01<sup>c</sup></td>
<td>3.79±0.03<sup>a</sup></td>
<td>2.34±0.09<sup>a</sup></td>
<td>3.25±0.04<sup>a</sup></td>
<td>0.61±0.01<sup>a</sup></td>
</tr>
<tr>
<td>22:6n-3</td>
<td>14.68±0.11<sup>n</sup></td>
<td>10.41±0.20<sup>d</sup></td>
<td>16.08±0.15<sup>d</sup></td>
<td>18.19±0.26<sup>g</sup></td>
<td>11.43±0.38<sup>j</sup></td>
</tr>
<tr>
<td>Total PUFA</td>
<td>33.17</td>
<td>30.51</td>
<td>33.15</td>
<td>34.63</td>
<td>27.44</td>
</tr>
<tr>
<td>TL (%)</td>
<td>3.45±0.01<sup>i</sup></td>
<td>5.42±0.04<sup>l</sup></td>
<td>6.41±0.05<sup>g</sup></td>
<td>7.38±0.26<sup>g</sup></td>
<td>8.26±0.14<sup>n</sup></td>
</tr>
</tbody>
</table>

¹DMA, dimethyl acetel. ²NMID, nonmethylene-interrupted diene. SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid. *Results represent means ± SD; superscripts denote significant differences (P<0.05) between all fish species (20 species).
Table 6. The SFA, MUFA and PUFA compositions (% of total fatty acids) in all fish (20 species), lean fish (10 species), low-fat fish (6 species) and medium-fat fish (4 species)*

<table>
<thead>
<tr>
<th>Category</th>
<th>SFA</th>
<th>MUFA</th>
<th>PUFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>All fish</td>
<td>34.3±3.23%</td>
<td>27.8±7.01%</td>
<td>37.9±7.71%</td>
</tr>
<tr>
<td>Lean fish</td>
<td>33.7±2.55%</td>
<td>23.3±5.55%</td>
<td>43.1±7.20%</td>
</tr>
<tr>
<td>Low-fat fish</td>
<td>36.3±3.90%</td>
<td>29.9±3.51%</td>
<td>33.8±4.41%</td>
</tr>
<tr>
<td>Medium-fat fish</td>
<td>32.7±2.92%</td>
<td>35.9±5.80%</td>
<td>31.4±3.16%</td>
</tr>
</tbody>
</table>

SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid. *Results represent means±SD; superscripts denote significant differences (P<0.05) between all fish species (20 species).

고려지방비율과 달리 소자지방비율의 경우에는 외장성 SFA 조성비가 PUFA에 비하여 더 높았는데 이는 14:0의 조성
비가 다소 높았기 때문이다. 즉 소자지방비율 중에서 SFA인 14:0 조성비는 평균 6.23%로 지자지방비율(평균 24.0%)과 중간
지자지방비율(평균 4.13%)보다 다소 높았다. 그러나 또 하나의 주요 SFA인 16:0의 조성비는 소자지방비율(평균 21.1%)과 지자지방
비율(평균 20.2%), 그리고 중간지자지방비율(평균 21.0%) 사이에
가의 차이가 없었다.

또한 중간지자지방비율에서는 MUFA의 조성비가 외장성 약간
높았는데 이는 20:1n-9 및 22:1n-11 등의 조성비가 다른 여류
들에 비하여 비교적 높았기 때문으로 보인다. 즉 20:1n-9의 조
성비가 중간지자지방비율에서 평균 4.04%를 나타낸 반면, 지자지
방비율 및 소자지방비율에서는 각각 평균 1.36% 및 1.87%를 나타
내었다. 그리고 22:1n-11의 조성비는 중간지자지방비율에서 평균
4.54%를 나타낸 반면 지자지방비율 및 소자지방비율에서는 각각
평균 0.75% 및 0.88%를 나타내었다. 특히 중간지자지방비율 중에
서도 지자비율은 20:1n-9 및 22:1n-11을 각각 10.8% 및 14.3%가
항목되었으며, 이는 중간지자지방비율은 물론 20종의 모든 여류 중
에에서도 유의하게 가장 높은 수준을 각각 나타내었다(P<0.05).
지자비율의 경우처럼 20:1n-9 및 22:1n-11 조성비가 특히 높은
여류는 육류형과 중간형(15.5% 및 14.36%)과 천
(5.20% 및 6.37%)(Huynh and Kitts, 2009), 그리고 대양형
(12.4% 및 15.3%(Budge et al., 2002), 대양형 천
(16.3% 및 24.4%(Copeman and Parrish, 2004) 등이 있다.
이들 2종의 MUFA 조성비가 높은 이유는 천와 동물성의 주요
미량인 copoped(요각류) 때문으로 알려져 있다(Graeven et
al., 1994; Budge et al., 2002). 즉 요각류의 주요 지자성분인
wax esters 중 20:1 및 22:1 fatty alcohol이 어류의 세포에서 산
화되어 20:1n-9 및 22:1n-11 지자비율로 전환된 데로 보
고되어 있다(Tocher, 2003). 지자비율의 주요 미량은 동물성 플
랑크로드로 알려져 있고(Kim et al., 2005), 실제 식취포산 자
리들내부내용물 중에는 동물성 플랑크로드 요각류가 전체의
99.3%를 차지하였다는 보고도 있다(Ko and Jeon, 1983). 따라
서 본 연구에서 지자비율이 높은 수준의 20:1n-9와 22:1n-11을 함
유하는 것은 동릴아나 천의 경우처럼 요각류를 주로 섭취하
는 식성 때문으로 생각된다. 한편 동양산 자리들의 지자비율 조성
(Jeong et al., 1998b)은 제주도산 자리들의 경우와 달리 20:1n-9
및 22:1n-11이 거의 꼬름지지 않았다. 이러한 차이는 분석서
료 처리방법에서의 차이도 있겠으나, 서식 환경 및 먹이의 영
향이 큰 때문으로 생각된다(Kayama et al., 1963; Jeong et al.,
1998b). 따라서 어류 지질성분에서 n-3 PUFA를 포함한 다양한
지자비율이 존재하는 것은 해양생물의 먹이연쇄 과정, 즉 식물
성 플랑크로드로부터 동물성 플랑크로드, 소양어, 대양어 등 고차
영양단계에 이르기까지 이들 지자비율이 계속적으로 결정된 결과로 생
각된다(Kayama et al., 1963).

한편 본 연구에서 시험한 제주도산 아열대성 어류 20종의
DHA, EPA 및 n-3 PUFA의 조성비는 평균 27.0±8.68%를 나
타내었다. 이 결과는 동양산 72종 어류 중 19종의 표준처리유
어(29.9±7.71%) 및 14종의 연안현조어(26.2±7.19%)의 경
우와 유사하다(Jeong et al., 1998b). 또한 본 연구에서 n-3
PUFA 조성비는 남부 팔리핀 해역에서 얻어진 엘레상을 (Metillio
and Asparinas-Eye, 2014)의 n-3 PUFA 조성비(9.73-
17.1%, 평균 13.2%)에 비해서 약 14%가 크게 높았다. 하지
만 북태평양산 영양성 어류(Huynh and Kitts, 2009)의 n-3
PUFA 조성비(33.8-44.9%, 평균 38.2%)에 비해시는 제주도산
어의 경우 10%가 낮은 결과를 나타내었다. 따라서 이 결과는 상
기에서 언급한 바와 같이 고위도 지역의 해역에서 서식하는 어
류임수록 지자비율이 높아질수록가 높아진다는 사실과 잘 일치한다
(Huynh and Kitts, 2009; Saito et al., 1999).

이상의 결과를 종합해 볼 때, 본 연구에서 시험한 제주도산
아열대성 어류 20종의 TL 함량 및 지자비율조성에서 이전에 보
고된 한국산 어류의 경우와 거의 차이가 없었으며, 특히 기존
의 연안조어(Jeong et al., 1998b)의 경우와 유사한 것으로 보아 TL 및 n-3 PUFA의 균급으로서 충분히 이용가능한 것으
로 생각된다.

사 사

이 연구는 2016년도 경상대학교 학술진흥지원사업 연구비에
의하여 수행되었음.

References

Champaign, U.S.A.
Bradberry JC and Hilleman DE. 2013. Overview of omega-3 fatty acid therapies. Pharm Ther 38, 681-691.

